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Ocean Cavities
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Ocean Cavities
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Observations of Ocean Cavities
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Autonomous submersibles
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Importance of Ocean Cavities

The constraints on the oceanic delivery of heat to Antarctic ice
shelves and its impact on melt rates remains critically under-
studied.

Our inability to constrain the rate of retreat of Antarctic glaciers
and how the Antarctic Ice Sheet will behave in a warming climate
remains the single most significant reason for the large uncertainty
In sea level projections over the 21st century.

Ocean-Ice interactions in Antarctica stand as one of the grand
challenges of climate science today

Study Report “The Sleeping Giant: Measuring Ocean-Ice Interactions in the Antarctic”
Sponsored by the Keck Institute for Space Studies, December 2015
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MPAS-Ocean Vertical Grid

» Versatile Arbitrary Lagrangian-Eulerian (ALE) Vertical Grid
and new pressure gradient formulation allows tilted cells

 Stability criterion for severely tilted cells:
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* New ocean grid initialization method enforces stability
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ACME B Case (active ocean, sea ice, atmosphere)

EC 60-30 km ocean with static ice shelves
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Ocean Model: Ice Draft/lce Pressure

* On start-up, draft and pressure must be in static balance.
 lce draft is obtained is from observations

* Pressure depends on density of displaced water

* New, iterative initialization solves for balanced pressure

ipressu re

bedrock

Hydrostatic balance

p= f p(2)gdz
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Changes for Static Cavities: Coupling

- Before: globe was partitioned into land or ocean

* Now: ocean may underlie land model:
1. Atmosphere sees same land/ocean partition as previously
2. Sea ice fluxes below open ocean, land ice fluxes below ice shelves
3. Land runoff must be delivered to edge of land (not ocean)

« Changes were to mapping files, not coupler code.

old: atmosphere new: atmosphere
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Idealized Testing

Second Ice Shelf-Ocean Model Inter-comparison Project

(ISOMIP+): steep channel with warm water at seafloor

* Induces strong melt rates (100m/yr)
* Flows up underside of ice shelf, inducing overturning
temperature (C) sliced through y=40 km
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ACME B Case (active ocean, sea ice, atmosphere, land)
EC 60-30 km ocean with static ice shelves
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Simulating Marine Ice Sheet Dynamics in MPAS Land Ice

Grounding line dynamics: |

* Processes there have a first-order control on ice [ e e
sheet stability and associated sea level changes.

* Challenging to model accurately in ice sheet models.

 MPAS-LI recently passed the MISMIP3D benchmark
test for marine ice sheets, indicating readiness for
Antarctica simulations. (poster: Matt Hoffman)
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Grounding line b = b(x,y)

MPAS-LI Modeled Ice Speed
Variable resolution meshes , High-res mesh (1.5-30 km)
* Guided by MISMIP3D '
results
* Low, Mid, and High res AIS
meshes complete

* In testing phase
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What’s next?

« Run ACME with static ocean cavities
— B Case: active ocean, sea ice, atmosphere, land
— G Case: CORE-II forcing, active ocean, sea ice

« Evaluate ocean cavities, compare to available observations
* How do sub-shelf currents change in a warming climate?
Future Work:

 Run ACME with active land ice model

* Dynamic ice shelf extent would require:

— Wetting/drying of ocean cells (V2) for grounding line motion
— Coupling masks that change dynamically
— Improved calving model

 Investigate ice shelf melting and instabilities, SLR
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